12,179 research outputs found

    Statistical and dynamical decoupling of the IGM from Dark Matter

    Full text link
    The mean mass densities of cosmic dark matter is larger than that of baryonic matter by a factor of about 5 in the Ξ›\LambdaCDM universe. Therefore, the gravity on large scales should be dominant by the distribution of dark matter in the universe. However, a series of observations incontrovertibly show that the velocity and density fields of baryonic matter are decoupling from underlying dark matter field. This paper shows our attemps to unveil the physics behind this puzzle. In linear approximation, the dynamics of the baryon fluid is completely governed by the gravity of the dark matter. Consequently, the mass density field of baryon matter ρb(r,t)\rho_b({\bf r},t) will be proportional to that of dark matter ρdm(r,t)\rho_{\rm dm}({\bf r},t), even though they are different from each other initially. In weak and moderate nonlinear regime, the dynamics of the baryon fluid can be sketched by Burgers equation. A basic feature of the Burgers dynamics is to yield shocks. When the Reynolds number is large, the Burgers fluid will be in the state of Burgers turbulence, which consists of shocks and complex structures. On the other hand, the collisionless dark matter may not show such shock, but a multivalued velocity field. Therefore, the weak and moderate nonlinear evolution leads to the IGM-dark matter deviation. Yet, the velocity field of Burgers fluid is still irrotational, as gravity is curl-free. In fully nonlinear regime, the vorticity of velocity field developed, and the cosmic baryonic fluid will no longer be potential, as the dynamics of vorticity is independent of gravity and can be self maintained by the nonlinearity of hydrodynamics. In this case, the cosmic baryon fluid is in the state of fully developed turbulence, which is statistically and dynamically decoupling from dark matter. This scenario provides a mechanism of cohenent explanation of observations.Comment: 21 page

    Strong and Electromagnetic Decays of The DD-wave Heavy Mesons

    Full text link
    We calculate the Ο€\pi, ρ\rho, Ο‰\omega, and Ξ³\gamma coupling constants between the heavy meson doublets (1βˆ’,2βˆ’)(1^-,2^-) and (0^-,1^-)/(0^+,1^+) within the framework of the light-cone QCD sum rule at the leading order of heavy quark effective theory. Most of the sum rules are stable with the variations of the Borel parameter and the continuum threshold. Then we calculate the strong and electromagnetic decay widths of the (1βˆ’,2βˆ’)(1^-,2^-) D-wave heavy mesons. Their total widths are around several tens of MeV, which is helpful in the future experimental search.Comment: 20 pages, 13 figure
    • …
    corecore